Documentation
- License
- Artificial Assymetric Intelligence
- Psyop Detection
- Graph Based Naive Bayes
- Decision Ambiguity
- Collisikekkenshiki
- Distribute Nervoussystem And Dynamic Reward Allocation
- Shortest Path Between Statistics
- Intelligent Ultra Compressed Autonomous Agent
- Daticesupe: Concepts For Nightmare Solstice
- Selection By Vortex
- Maximum Read, Minimum Write
- Expanding On Containerization
BASIC CONCEPTS
INTERMEDIATE CONCEPTS
Graph Based Naive Bayes
A subset of Naive Bayes that gets its probability from matrixe / graphs rather than through flat array spaces, in order to place constraints finding a comrpomise between random and iterative. Such a graph can be simple digraphs:
matrix = [
[[a, a], [a, b], [a, c]],
[[b, a], [b, b], [b, c]],
[[c, a], [c, b], [c, c]],
]
Or more complex grid patterns:
matrix = [
[[a, a, a, a, a, a],
[a, a, a, a, a, b],
[a, a, a, a, a, c],
[a, a, a, a, a, d],
[a, a, a, a, a, e],
[a, a, a, a, a, f]],
[[b, b, b, b, b, a],
[b, b, b, b, b, b],
[b, b, b, b, b, c],
[b, b, b, b, b, d],
[b, b, b, b, b, e],
[b, b, b, b, b, f]],
[[c, c, c, c, c, a],
[c, c, c, c, c, b],
[c, c, c, c, c, c],
[c, c, c, c, c, d],
[c, c, c, c, c, e],
[c, c, c, c, c, f]],
[[d, d, d, d, d, a],
[d, d, d, d, d, b],
[d, d, d, d, d, c],
[d, d, d, d, d, d],
[d, d, d, d, d, e],
[d, d, d, d, d, f]],
[[e, e, e, e, e, a],
[e, e, e, e, e, b],
[e, e, e, e, e, c],
[e, e, e, e, e, d],
[e, e, e, e, e, e],
[e, e, e, e, e, f]],
[[f, f, f, f, f, a],
[f, f, f, f, f, b],
[f, f, f, f, f, c],
[f, f, f, f, f, d],
[f, f, f, f, f, e],
[f, f, f, f, f, f]],
]